FreeFOAM The Cross-Platform CFD Toolkit
Hosted by SourceForge:
Get FreeFOAM at SourceForge.net.
            Fast, secure and Free Open Source software downloads

scalarMatrices.H File Reference


Detailed Description

Definition in file scalarMatrices.H.

#include "src/OpenFOAM/matrices/RectangularMatrix/RectangularMatrix.H"
#include "src/OpenFOAM/matrices/SquareMatrix/SquareMatrix.H"
#include "src/OpenFOAM/matrices/DiagonalMatrix/DiagonalMatrix.H"
#include "src/OpenFOAM/fields/Fields/scalarField/scalarField.H"
#include "src/OpenFOAM/primitives/Lists/labelList.H"
Include dependency graph for scalarMatrices.H:

Go to the source code of this file.

Namespaces

namespace  Foam
 

Namespace for OpenFOAM.


Typedefs

typedef RectangularMatrix< scalar >  scalarRectangularMatrix
typedef SquareMatrix< scalar >  scalarSquareMatrix
typedef DiagonalMatrix< scalar >  scalarDiagonalMatrix

Functions

template<class Type >
void  solve (scalarSquareMatrix &matrix, Field< Type > &source)
 Solve the matrix using Gaussian elimination with pivoting,.
template<class Type >
void  solve (Field< Type > &psi, const scalarSquareMatrix &matrix, const Field< Type > &source)
 Solve the matrix using Gaussian elimination with pivoting.
void  LUDecompose (scalarSquareMatrix &matrix, labelList &pivotIndices)
 LU decompose the matrix with pivoting.
template<class Type >
void  LUBacksubstitute (const scalarSquareMatrix &luMmatrix, const labelList &pivotIndices, Field< Type > &source)
 LU back-substitution with given source, returning the solution.
template<class Type >
void  LUsolve (scalarSquareMatrix &matrix, Field< Type > &source)
 Solve the matrix using LU decomposition with pivoting.
void  multiply (scalarRectangularMatrix &answer, const scalarRectangularMatrix &A, const scalarRectangularMatrix &B)
void  multiply (scalarRectangularMatrix &answer, const scalarRectangularMatrix &A, const scalarRectangularMatrix &B, const scalarRectangularMatrix &C)
void  multiply (scalarRectangularMatrix &answer, const scalarRectangularMatrix &A, const DiagonalMatrix< scalar > &B, const scalarRectangularMatrix &C)
scalarRectangularMatrix  SVDinv (const scalarRectangularMatrix &A, scalar minCondition=0)
 Return the inverse of matrix A using SVD.