Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026 #include <solidParticle/solidParticleCloud.H>
00027
00028
00029
00030 bool Foam::solidParticle::move(solidParticle::trackData& td)
00031 {
00032 td.switchProcessor = false;
00033 td.keepParticle = true;
00034
00035 const polyMesh& mesh = cloud().pMesh();
00036 const polyBoundaryMesh& pbMesh = mesh.boundaryMesh();
00037
00038 scalar deltaT = mesh.time().deltaT().value();
00039 scalar tEnd = (1.0 - stepFraction())*deltaT;
00040 scalar dtMax = tEnd;
00041
00042 while (td.keepParticle && !td.switchProcessor && tEnd > SMALL)
00043 {
00044 if (debug)
00045 {
00046 Info<< "Time = " << mesh.time().timeName()
00047 << " deltaT = " << deltaT
00048 << " tEnd = " << tEnd
00049 << " steptFraction() = " << stepFraction() << endl;
00050 }
00051
00052
00053 scalar dt = min(dtMax, tEnd);
00054
00055
00056
00057 label celli = cell();
00058
00059 dt *= trackToFace(position() + dt*U_, td);
00060
00061 tEnd -= dt;
00062 stepFraction() = 1.0 - tEnd/deltaT;
00063
00064 cellPointWeight cpw(mesh, position(), celli, face());
00065 scalar rhoc = td.rhoInterp().interpolate(cpw);
00066 vector Uc = td.UInterp().interpolate(cpw);
00067 scalar nuc = td.nuInterp().interpolate(cpw);
00068
00069 scalar rhop = td.spc().rhop();
00070 scalar magUr = mag(Uc - U_);
00071
00072 scalar ReFunc = 1.0;
00073 scalar Re = magUr*d_/nuc;
00074
00075 if (Re > 0.01)
00076 {
00077 ReFunc += 0.15*pow(Re, 0.687);
00078 }
00079
00080 scalar Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));
00081
00082 U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);
00083
00084 if (onBoundary() && td.keepParticle)
00085 {
00086 if (isA<processorPolyPatch>(pbMesh[patch(face())]))
00087 {
00088 td.switchProcessor = true;
00089 }
00090 }
00091 }
00092
00093 return td.keepParticle;
00094 }
00095
00096
00097 bool Foam::solidParticle::hitPatch
00098 (
00099 const polyPatch&,
00100 solidParticle::trackData&,
00101 const label
00102 )
00103 {
00104 return false;
00105 }
00106
00107
00108 bool Foam::solidParticle::hitPatch
00109 (
00110 const polyPatch&,
00111 int&,
00112 const label
00113 )
00114 {
00115 return false;
00116 }
00117
00118
00119 void Foam::solidParticle::hitProcessorPatch
00120 (
00121 const processorPolyPatch&,
00122 solidParticle::trackData& td
00123 )
00124 {
00125 td.switchProcessor = true;
00126 }
00127
00128
00129 void Foam::solidParticle::hitProcessorPatch
00130 (
00131 const processorPolyPatch&,
00132 int&
00133 )
00134 {}
00135
00136
00137 void Foam::solidParticle::hitWallPatch
00138 (
00139 const wallPolyPatch& wpp,
00140 solidParticle::trackData& td
00141 )
00142 {
00143 vector nw = wpp.faceAreas()[wpp.whichFace(face())];
00144 nw /= mag(nw);
00145
00146 scalar Un = U_ & nw;
00147 vector Ut = U_ - Un*nw;
00148
00149 if (Un > 0)
00150 {
00151 U_ -= (1.0 + td.spc().e())*Un*nw;
00152 }
00153
00154 U_ -= td.spc().mu()*Ut;
00155 }
00156
00157
00158 void Foam::solidParticle::hitWallPatch
00159 (
00160 const wallPolyPatch&,
00161 int&
00162 )
00163 {}
00164
00165
00166 void Foam::solidParticle::hitPatch
00167 (
00168 const polyPatch&,
00169 solidParticle::trackData& td
00170 )
00171 {
00172 td.keepParticle = false;
00173 }
00174
00175
00176 void Foam::solidParticle::hitPatch
00177 (
00178 const polyPatch&,
00179 int&
00180 )
00181 {}
00182
00183
00184 void Foam::solidParticle::transformProperties (const tensor& T)
00185 {
00186 Particle<solidParticle>::transformProperties(T);
00187 U_ = transform(T, U_);
00188 }
00189
00190
00191 void Foam::solidParticle::transformProperties(const vector& separation)
00192 {
00193 Particle<solidParticle>::transformProperties(separation);
00194 }
00195
00196
00197