00001 /*---------------------------------------------------------------------------*\ 00002 ========= | 00003 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox 00004 \\ / O peration | 00005 \\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd. 00006 \\/ M anipulation | 00007 ------------------------------------------------------------------------------- 00008 License 00009 This file is part of OpenFOAM. 00010 00011 OpenFOAM is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU General Public License as published by 00013 the Free Software Foundation, either version 3 of the License, or 00014 (at your option) any later version. 00015 00016 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 00019 for more details. 00020 00021 You should have received a copy of the GNU General Public License 00022 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 00023 Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 00024 00025 Application 00026 PDRFoam 00027 00028 Description 00029 Solver for compressible premixed/partially-premixed combustion with 00030 turbulence modelling. 00031 00032 Combusting RANS code using the b-Xi two-equation model. 00033 Xi may be obtained by either the solution of the Xi transport 00034 equation or from an algebraic exression. Both approaches are 00035 based on Gulder's flame speed correlation which has been shown 00036 to be appropriate by comparison with the results from the 00037 spectral model. 00038 00039 Strain effects are incorporated directly into the Xi equation 00040 but not in the algebraic approximation. Further work need to be 00041 done on this issue, particularly regarding the enhanced removal rate 00042 caused by flame compression. Analysis using results of the spectral 00043 model will be required. 00044 00045 For cases involving very lean Propane flames or other flames which are 00046 very strain-sensitive, a transport equation for the laminar flame 00047 speed is present. This equation is derived using heuristic arguments 00048 involving the strain time scale and the strain-rate at extinction. 00049 the transport velocity is the same as that for the Xi equation. 00050 00051 For large flames e.g. explosions additional modelling for the flame 00052 wrinkling due to surface instabilities may be applied. 00053 00054 PDR (porosity/distributed resistance) modelling is included to handle 00055 regions containing blockages which cannot be resolved by the mesh. 00056 00057 \*---------------------------------------------------------------------------*/ 00058 00059 #include <finiteVolume/fvCFD.H> 00060 #include <dynamicFvMesh/dynamicFvMesh.H> 00061 #include <reactionThermophysicalModels/hhuCombustionThermo.H> 00062 #include <compressibleRASModels/RASModel.H> 00063 #include <laminarFlameSpeedModels/laminarFlameSpeed.H> 00064 #include "XiModels/XiModel/XiModel.H" 00065 #include "PDRModels/dragModels/PDRDragModel/PDRDragModel.H" 00066 #include <engine/ignition.H> 00067 #include <OpenFOAM/Switch.H> 00068 #include <finiteVolume/bound.H> 00069 #include <dynamicFvMesh/dynamicRefineFvMesh.H> 00070 00071 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 00072 00073 int main(int argc, char *argv[]) 00074 { 00075 #include <OpenFOAM/setRootCase.H> 00076 00077 #include <OpenFOAM/createTime.H> 00078 #include <dynamicFvMesh/createDynamicFvMesh.H> 00079 #include "readCombustionProperties.H" 00080 #include <finiteVolume/readGravitationalAcceleration.H> 00081 #include "createFields.H" 00082 #include <finiteVolume/initContinuityErrs.H> 00083 #include <finiteVolume/readTimeControls.H> 00084 #include <finiteVolume/CourantNo.H> 00085 #include <finiteVolume/setInitialDeltaT.H> 00086 00087 scalar StCoNum = 0.0; 00088 00089 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 00090 00091 Info<< "\nStarting time loop\n" << endl; 00092 00093 while (runTime.run()) 00094 { 00095 #include <finiteVolume/readTimeControls.H> 00096 #include <finiteVolume/readPISOControls.H> 00097 #include <finiteVolume/CourantNo.H> 00098 00099 #include "setDeltaT.H" 00100 00101 // Indicators for refinement. Note: before runTime++ 00102 // only for postprocessing reasons. 00103 tmp<volScalarField> tmagGradP = mag(fvc::grad(p)); 00104 volScalarField normalisedGradP 00105 ( 00106 "normalisedGradP", 00107 tmagGradP()/max(tmagGradP()) 00108 ); 00109 normalisedGradP.writeOpt() = IOobject::AUTO_WRITE; 00110 tmagGradP.clear(); 00111 00112 runTime++; 00113 00114 Info<< "\n\nTime = " << runTime.timeName() << endl; 00115 00116 00117 bool meshChanged = false; 00118 { 00119 // Make the fluxes absolute 00120 fvc::makeAbsolute(phi, rho, U); 00121 00122 // Test : disable refinement for some cells 00123 PackedBoolList& protectedCell = 00124 refCast<dynamicRefineFvMesh>(mesh).protectedCell(); 00125 00126 if (protectedCell.empty()) 00127 { 00128 protectedCell.setSize(mesh.nCells()); 00129 protectedCell = 0; 00130 } 00131 00132 forAll(betav, cellI) 00133 { 00134 if (betav[cellI] < 0.99) 00135 { 00136 protectedCell[cellI] = 1; 00137 } 00138 } 00139 00140 //volScalarField pIndicator("pIndicator", 00141 // p*(fvc::laplacian(p)) 00142 // / ( 00143 // magSqr(fvc::grad(p)) 00144 // + dimensionedScalar 00145 // ( 00146 // "smallish", 00147 // sqr(p.dimensions()/dimLength), 00148 // 1E-6 00149 // ) 00150 // )); 00151 //pIndicator.writeOpt() = IOobject::AUTO_WRITE; 00152 00153 // Flux estimate for introduced faces. 00154 volVectorField rhoU("rhoU", rho*U); 00155 00156 // Do any mesh changes 00157 meshChanged = mesh.update(); 00158 00159 // if (mesh.moving() || meshChanged) 00160 // { 00161 // #include "correctPhi.H" 00162 // } 00163 00164 // Make the fluxes relative to the mesh motion 00165 fvc::makeRelative(phi, rho, U); 00166 } 00167 00168 00169 #include "rhoEqn.H" 00170 #include "UEqn.H" 00171 00172 // --- PISO loop 00173 for (int corr=1; corr<=nCorr; corr++) 00174 { 00175 #include "bEqn.H" 00176 #include "ftEqn.H" 00177 #include "huEqn.H" 00178 #include "hEqn.H" 00179 00180 if (!ign.ignited()) 00181 { 00182 hu == h; 00183 } 00184 00185 #include "pEqn.H" 00186 } 00187 00188 turbulence->correct(); 00189 00190 runTime.write(); 00191 00192 Info<< "\nExecutionTime = " 00193 << runTime.elapsedCpuTime() 00194 << " s\n" << endl; 00195 } 00196 00197 Info<< "\n end\n"; 00198 00199 return 0; 00200 } 00201 00202 00203 // ************************ vim: set sw=4 sts=4 et: ************************ //