00001 /*---------------------------------------------------------------------------*\ 00002 ========= | 00003 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox 00004 \\ / O peration | 00005 \\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd. 00006 \\/ M anipulation | 00007 ------------------------------------------------------------------------------- 00008 License 00009 This file is part of OpenFOAM. 00010 00011 OpenFOAM is free software: you can redistribute it and/or modify it 00012 under the terms of the GNU General Public License as published by 00013 the Free Software Foundation, either version 3 of the License, or 00014 (at your option) any later version. 00015 00016 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 00017 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 00018 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 00019 for more details. 00020 00021 You should have received a copy of the GNU General Public License 00022 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 00023 00024 Application 00025 engineFoam 00026 00027 Description 00028 Solver for internal combustion engines. 00029 00030 Combusting RANS code using the b-Xi two-equation model. 00031 Xi may be obtained by either the solution of the Xi transport 00032 equation or from an algebraic exression. Both approaches are 00033 based on Gulder's flame speed correlation which has been shown 00034 to be appropriate by comparison with the results from the 00035 spectral model. 00036 00037 Strain effects are encorporated directly into the Xi equation 00038 but not in the algebraic approximation. Further work need to be 00039 done on this issue, particularly regarding the enhanced removal rate 00040 caused by flame compression. Analysis using results of the spectral 00041 model will be required. 00042 00043 For cases involving very lean Propane flames or other flames which are 00044 very strain-sensitive, a transport equation for the laminar flame 00045 speed is present. This equation is derived using heuristic arguments 00046 involving the strain time scale and the strain-rate at extinction. 00047 the transport velocity is the same as that for the Xi equation. 00048 00049 Usage 00050 - engineFoam [OPTION] 00051 00052 @param -case <dir> \n 00053 Specify the case directory 00054 00055 @param -parallel \n 00056 Run the case in parallel 00057 00058 @param -help \n 00059 Display short usage message 00060 00061 @param -doc \n 00062 Display Doxygen documentation page 00063 00064 @param -srcDoc \n 00065 Display source code 00066 00067 \*---------------------------------------------------------------------------*/ 00068 00069 #include <finiteVolume/fvCFD.H> 00070 #include <engine/engineTime.H> 00071 #include <engine/engineMesh.H> 00072 #include <reactionThermophysicalModels/hhuCombustionThermo.H> 00073 #include <compressibleTurbulenceModel/turbulenceModel.H> 00074 #include <laminarFlameSpeedModels/laminarFlameSpeed.H> 00075 #include <engine/ignition.H> 00076 #include <OpenFOAM/Switch.H> 00077 #include <OpenFOAM/OFstream.H> 00078 00079 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 00080 00081 int main(int argc, char *argv[]) 00082 { 00083 #include <OpenFOAM/setRootCase.H> 00084 00085 #include <engine/createEngineTime.H> 00086 #include <engine/createEngineMesh.H> 00087 #include "../XiFoam/readCombustionProperties.H" 00088 #include "../XiFoam/createFields.H" 00089 #include <finiteVolume/initContinuityErrs.H> 00090 #include "readEngineTimeControls.H" 00091 #include <finiteVolume/compressibleCourantNo.H> 00092 #include <finiteVolume/setInitialDeltaT.H> 00093 #include "startSummary.H" 00094 00095 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 00096 00097 Info << "\nStarting time loop\n" << endl; 00098 00099 while (runTime.run()) 00100 { 00101 #include <finiteVolume/readPISOControls.H> 00102 #include "readEngineTimeControls.H" 00103 #include <finiteVolume/compressibleCourantNo.H> 00104 #include <finiteVolume/setDeltaT.H> 00105 00106 runTime++; 00107 00108 Info<< "Crank angle = " << runTime.theta() << " CA-deg" << endl; 00109 00110 mesh.move(); 00111 00112 #include <finiteVolume/rhoEqn.H> 00113 00114 #include "UEqn.H" 00115 00116 // --- PISO loop 00117 for (int corr=1; corr<=nCorr; corr++) 00118 { 00119 #include "../XiFoam/ftEqn.H" 00120 #include "../XiFoam/bEqn.H" 00121 #include "../XiFoam/huEqn.H" 00122 #include "../XiFoam/hEqn.H" 00123 00124 if (!ign.ignited()) 00125 { 00126 hu == h; 00127 } 00128 00129 #include "pEqn.H" 00130 } 00131 00132 turbulence->correct(); 00133 00134 #include "logSummary.H" 00135 00136 rho = thermo.rho(); 00137 00138 runTime.write(); 00139 00140 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s" 00141 << " ClockTime = " << runTime.elapsedClockTime() << " s" 00142 << nl << endl; 00143 } 00144 00145 Info<< "End\n" << endl; 00146 00147 return 0; 00148 } 00149 00150 00151 // ************************ vim: set sw=4 sts=4 et: ************************ //